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tions.7 At this time, in view of the electronegativity of C6F5 and 
the higher stabilities of the complexes when more electron-r/'c/i 
ir-arenes are employed, the stabilization of the complex is a 
delicate balance of "push-pull" electronic configuration. This 
delicate stabilizing "balancing act" is needed in spite of the fact 
that I is a closed shell diamagnetic 18-electron configuration. 
Thus, strongly electronegative u-bonded ligands with sup­
posedly strong Tr-acceptor characteristics are required, and 
another good candidate is the pentachlorophenyl group, in light 
of the recent work of Wada and coworkers.8 

The preparative details for synthesizing I are very similar 
to those previously described for the analogous Co complex.' 
Vaporizing 1.5 g of Ni and depositing with 50 mL of CeF5Br 
and 15 mL of dry toluene yields ~3.5 g of product crystallized 
from toluene: mp 137-140 0 C (darkens at 125 0 C); IR (KBr 
pellet, cm - 1 ) 3120 (w), 2940 (w), 1640 (w), 1615 (w), 1535 
(m, sh), 1505 (vs), 1470 (vs), 1440 (vs, sh), 1390 (m), 1360 
(m), 1280(w,sh), 1260 (w), 1215 (w), 1180(w), 1120(w), 
1060 (s), 1040 (m, sh), 1005 (w), 985 (w), 960 (vs), 875 (w), 
800 (s), 790 (s), 730 (w). Anal. Calcd for 
^-C 6 H 5 CH 3 (C 6 Fs) 2 Ni: C, 47.06; H, 1.66; F, 39.17. Found: 
C, 47.10; H, 1.70; F, 39.20. 

Additional chemistry, x-ray structures, and syntheses of 
other metal(II)-arene complexes (both by metal vapor means 
and conventional means) will be reported soon. 
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Reactions of Carbenes at Low Temperatures. 
Diphenylcarbene and Isobutene 

Sir-
Reactions of triplet diphenylcarbene, Ph2C, with olefins are 

readily observable at ambient temperature,1,2 whereas the 
analogous chemistry of phenylcarbene and phenylmethyl-
carbene becomes dominant only at very low temperatures.3-4 

Notwithstanding the report that Ph2C reacts with isobutene 
only by addition at 25 0 C , l d we find that both addition and 
"insertion" reactions compete effectively at 0 0 C, albeit the 
former is dominant; cf. eq 1. We now report that (a) reaction 

Ph,C=N, 

CH2 

+ Ph.,CH—CH,—C—CH3 

1 (1) 

1 is dramatically temperature dependent, with 2 becoming the 
near-exclusive product at — 196 0 C; (b) alkene 2 is a true ab­
straction-recombination (a-r) product at —77 °C and prob­
ably also at —196 0 C, although there the matrix imposes a 
"memory" effect on radical-pair recombination; and (c) the 
observed relation between In (2/1) and T~x implies that there 
is no enhancement of olefin formation3 when Ph2C and iso­
butene react in the solid phase. 

Photolysis at 0 0 C of 0.116 M solutions of diphenyldiazo-
methane5 in isobutene gave l,l-dimethyl-2,2-diphenylcyclo-
propane (1) and 2-methyl-4,4-diphenyl-l-butene (2) in a ratio 
of 3.2:1, eq 1.6 Also formed were benzophenone, benzophenone 
ketazine, and (<1%) diphenylmethane. Cyclopropane 1 was 
identified by NMR, l d whereas authentic 2 was prepared by 
Yates' method,7 and was identical (GC, NMR,7 IR) with 28 

isolated from reaction 1. 
The temperature dependence of reaction 1 is illustrated by 

Table I; at —196 0 C, olefin 2 was almost the sole C p H i s 
product detectable.9 

To investigate the origin of 2, diphenyldiazomethane was 
photolyzed in 1 3CH2=C(CHj)2 .1 0 In the 13C NMR spectrum 
of 2,Ci and C3 appear at 5 C

T M S 112.62 and 43.96, respectively. 
Intensity analyses of these signals, in standard and reaction 
product samples of 2, afforded 1 3C3J3Ci label distributions 
of 50:50 and 28:72, respectively, in 2 from - 7 7 0 C (solution) 
and - 1 9 6 0 C (matrix) photolyses." 

The equidistribution of 13C between Cj and C3, observed 
in product 2 formed at —77 0 C, establishes an a-r mechanism 
operating with complete equilibration of radical pair 3; cf. eq 
2. Label equilibration is significantly incomplete in the — 196 

*CH, 

Ph2CJf + CH3CCH3 (Ph, CH CH,-

3 

*CH, 

XH;) 

*CH, 
* Il " 

— * Ph2CHCH2CCH3 (2) 

2 

0 C matrix photolysis, with the direction of inequality 
suggesting a partial inhibition, by the matrix, of the relative 
motions needed within 3 to geometrically equilibrate C3 and 
Ci, relative to Ph2CH. There is no evidence for triplet Ph2C 
addition, followed by H migration, as an important origin of 
2.4-12 Such a mechanism would require an excess of 13C at 
C3. 

Figure 1 presents In (2/1) as a function of T ' . A least-
squares correlation based on all five points (r = 0.988, signif­
icant at the 99% confidence level) yields A£|Pp(areiU) = 1 . 1 
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Figure 1. In (2/1) vs. 7"-1 (K-1) for reaction 1; cf. Table I. Points a-c 
represent solution experiments; points d and e refer to matrix photolys-
es. 

Table I. Product Ratios from Ph2C and Isobutene as a Function of 
Temperature" 

Temp, 0 C 

0 
-77 
- 1 3 0 
- 1 5 5 f 

-196<-

2/1 

0.243 
0.682 
3.07 
6.25 

44.6 

Av dev„* 

0.0084 

0.0072 

0.043 

0.143 

7.576 

" Values were determined by GC6 and are corrected for relative 
detector response. * Average deviation of n experiments. c Solid 
isobutene matrices were formed. 

kcal/mol. However, A£apP contains contributions from at least 
four sources', activation energies for singlet addition {Elf), 
triplet abstraction (£"ablt), and triplet addition (ESJ), as well 
as the differential singlet-triplet energy (A£S-T)- lfE$is the 
largest of the activation energies,13 and triplet addition is ne­
glected, then AEIPP ~ (E^ - E^) + A£S-T- Taking an upper 
limit of 3 kcal/mol for A£S-T,la'2c and recalling that A£aPP = 
1.1 kcal/mol, we estimate that (££& - Eli) < 1.9 kcal/mol.14 

That is, the activation energy for triplet abstraction15 is greater 
than that for singlet addition, but the difference is smaller than 
AiTs-T-16 Thus, as temperature decreases for reaction 1, triplet 
abstraction gains relative to singlet addition, because the in­
crease in triplet population more than offsets the higher acti­
vation energy needed for abstraction. 

Analogous behavior may well be common for other aryl-
carbenes, viz., phenylcarbene,3 phenylmethylcarbene,4 and 
fluorenylidene.17 More generally, we should expect similar 
temperature dependent phenomena with other carbenes and 
for other types of competitive singlet and triplet reac­
tions. I8'19 

Finally, it will be noted from Figure 1, that less olefin is 
formed in the -196 0C matrix experiment (point e) than is 
predicted by simple extrapolation of the solution points: 2/1 
predicted by extrapolation of points a-c is ~290 at -196 0C, 
whereas the observed value is 44.6. With Ph2C and isobutene, 
it is clear that temperature effects (i.e., differential energy 
factors) are largely, if not exclusively, responsible for the 
ultimate dominance of the triplet abstraction reaction in both 
very cold solutions and frozen matrices. The suspicion is strong 
that temperature effects must also be major influences in the 
previously observed, analogous reactions of phenylcarbene3 

and phenylmethylcarbene.4 
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Selective Olefin Dimerization 
via Tantallocyclopentane Complexes 

Sir: 

We have shown recently that a neopentylidene complex, 
TaCp(CHCMe3)Cl2, reacts with ethylene to give 4,4-di-
methyl-1-pentene,1 probably by transfer of a /3-hydrogen atom 
selectively to the substituted a-carbon atom in an intermediate 
tantallocyclobutane complex.2 If the organometallic product 
of the initial reaction, CpCl2TaCH2CH2CH2CH2 (1), were 
to decompose similarly,3 it would be a catalyst for dimerizing 
ethylene selectively to 1-butene, an almost unknown result for 
metal hydride based homogeneous catalysts.4 We present re-
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